Задача 3.1. Имеется таблица распределения двумерной случайной величины (X,Y):

Y\X 1 2 3
2 0,07 0,16 0,10
4 0,13 0,09 0,18
6 0,10 0,05 0,12

Составить таблицы распределения вероятностей для каждой из величин X и Y.

Задача 3.2. Задана дискретная двумерная случайная величина:

Y\X 2 5 8
0,4 0,15 0,30 0,35
0,8 0,05 0,12 0,03

Найти условный закон распределения X при Y=0.8.

Задача 3.3. Найти регрессию величины X на Y, или условное математическое ожидание M(X/Y=y) для трех ее значений y=2, y=6, y=8 на основе заданной таблицы распределения двумерной случайной величины:

Y\X 1 3 4
2 0,22 0,10 0,06
6 0,12 0,08 0,05
8 0,17 0,13 0,07

 

Задача 3.4. Задан закон распределения двумерной случайной величины (X,Y):

X\Y –1 0 1
1 0,15 0,30 0,35
2 0,05 0,05 0,10

Найти условное математическое ожидание M(Y/X=1).

Задача 3.5. Задан закон распределения двумерной случайной величины (X,Y):

Y\X 2 3 5
1 0,10 0,20 0,15
3 0,05 0,14 0,11
4 0,12 0,08 0,05

Найти условное математическое ожидание величины Y для всех возможных значений величины X, т.е. M(Y/X=2), M(Y/X=3), M(Y/X=5).

Задача 3.6. Для заданного закона распределения вероятностей двумерной случайной величины (X,Y):

Y\X 2 5
8 0,15 0,10
10 0,22 0,23
12 0,10 0,20

Найти коэффициент корреляции между величинами X и Y.

Задача 3.7. Для заданного закона распределения вероятностей двумерной случайной величины (X,Y):

X\Y 1 4
3 0,12 0,20
5 0,24 0,15
6 0,22 0,07

Найти коэффициент корреляции между величинами X и Y и написать уравнение линейной средней квадратической регрессии Y на X.

Задача 3.8. Задан закон распределения двумерной случайной величины:

X\Y 1 3 4
2 0,20 0,15 0,05
4 0,10 0,11 0,14
5 0,08 0,05 0,12

Найти уравнение линейной средней квадратической регрессии X на Y.

Задача 3.9. Задан закон распределения двумерной случайной величины:

Y\X 1 2 4
1 0,05 0,12 0,08
3 0,11 0,10 0,20
5 0,20 0,08 0,06

Найти уравнение линейной средней квадратической регрессии Y на X.

Задача 3.10. По данным задачи 3.8 найти условное математическое ожидание M(Y/X=x) для всех значений x, уравнение линейной регрессии Y на X. Результаты решения отобразить на плоскости XOY в виде соответствующих точек и уравнения прямой.

Download (PDF, 325KB)

Август 30th, 2014

Posted In: Контрольная работа, Математика, Теория вероятности

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *